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Abstract—Eigenfunctions have been developed for the clamped, rectangular orthotropic plate undergoing small
deflections. The familiar Fadle-Papkovitch (1] functions for the isotropic case are shown to form a special case
of the “‘orthotropic eigenfunctions”. An analysis for orthotropic plates using these functions yields extremely
accurate solutions.

1. INTRODUCTION

ONE of the useful methods for problems of bending of clamped, rectangular isotropic
plates is the method of eigenfunctions. The literature on this is extensive ; see [1-9]. Tentative
solutions of the biharmonic equation are postulated and a transcendental eigenvalue
equation is obtained by satisfying homogeneous boundary conditions at the clamped
edges. Solution of the eigenvalue equation gives rise to expansions in terms of eigen-
functions, a linear combination of which is generally sufficient to satisfy the boundary
conditions on the remaining edges.

The purpose of this work is to develop eigenfunctions for the clamped, rectangular,
orthotropic plate undergoing “‘small” deflections, and to present an analysis of the problem
using these functions. These functions have not been developed before; the Fadle-
Papkovitch [1, 2] functions, well-known for the isotropic case, form a special case of the
functions developed here. The clamped orthotropic plate problem can, of course, be
treated by other more familiar techniques discussed in Timoshenko [10] and Lechnitzky
[11]. The present analysis with the eigenfunctions yields an extremely accurate solution
and is well suited for machine computation.

1.1. Statement of the problem

We consider a clamped, rectangular, orthotropic plate of size a x b and thickness, h.
The material has three planes of symmetry with respect to its elastic properties. Following
Timoshenko [10] we choose these planes as the co-ordinate planes (Fig. 1) and assume the
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FiG. 1. The clamped, rectangular, orthotropic plate.

stress—strain relations for the case of plane stress in x—y plane as:
o, = E e, +E",
o, = E¢,+E", (1)
Ty = Oy

The governing differential equation for the deflection, w, of the plate under transverse
load Q, is
o*w o* o*
DS lvon 2 4p Y

xa a 26 2 yW = Q(x’y) (2)

where
D, = E.h*/12; D, = E’yh3/12; H=D,+2D,,

D, = E'W/12; D, = Gh¥12.

The bending moments are given by

O*w *w
Mx = "'(Dxa 2+Dla 2)
)
*w w
M, = ‘(Dy5y7+Dla—x2)
The boundary conditions are
Z;v =0 ony=+bh2 (4.1)
ow
w = =0 onx= +a/2. (4.2)
ox
2. EIGENFUNCTIONS
Consider the homogeneous equation
o*w 0w 0w
Dxa 4+2Ha 7 2+D”57=0' (5
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Assume tentatively a solution in the form

w = cosh( )F( )
and let
ow
= = = +b/2.
w 3 Oaty = +b/
F is then determined by

d*F d’F 16p*
—dy—4+261( X ) ¥ 24—6“"( e |F =0

under the conditions F = dF/dy = 0 at y = +b/2.
The constants C, and C, in equation (6) are given by

C, = H/D, = (D, +2D,,)/D, = (E"+2G)/E,
C, = /(D,/D, = J(E/E}).
On the basis F = e“?, it is seen that
= gbg(-i:piiq)

where

p=[(C.—Cy)/2]
q=[(C,+C)/2].
The even eigenfunction can now be written as

Fe [COS(Zpr/b) cosh(2ppy/b) _sin(2gpy/b) sinh(pry/b)]
cos(gp)  cosh(pp) sin(gp)  sinh(pp)

where p is given by the transcendental equation

sin(2gp) + sinh(2pp)
q p

=0.

The odd eigenfunction is

Fe [sin(Eqpy/b) cosh(2ppy/b) _cos(2gpy/b) sinh(2ppy/b)}
sin(gp)  cosh(pp) cos(gp)  sinh(pp)

and the transcendental equation is

sin(2gp) _ sinh(2pp)
q D

= 0.
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(10.1)

(9.2)

(10.2)

The eigenfunctions for the isotropic case may be obtained as a special case from the
above expressions by putting E; = E, = Ef(1—u?), E" = pEf(1—y*) and G = E/2(1+p),
sothat C; = C, = 1, from which if follows p = 0, g = L. In the limitof p > 0 and g = 1,
the expressions (9.1), (9.2), (10.1) and (10.2) reduce to the familiar Fadle-Papkovitch

functions [1, 2].
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Indeed, the condition p = 0, i.e. C, = C, is adequate to reduce the problem to an
isotropic case. For, with the new variable y, = y\/ C,, equations (5) and (6) assume the
familiar forms of the isotropic problem (page 367, Timoshenko [10]).

In the above analysis it is implied that C, > C,, which makes p a real quantity. At
least for plywood materials, assuming the elastic constants given in Timoshenko [10], we
have found p to be a real quantity. Even if p is imaginary, as it may happen for other
materials, the above relations are valid.

The transcendental equations (10.1) and (10.2) have infinite number of complex roots
expressible as (+ag+iflg), K =1,2,....

The asymptotic form for the Kth root of equation (10.1) (symmetric case) is found to be

Px =5 {[plog(p/q)+ (4K — 1)nq/2] + i[(4K — I)np/2 —q log(p/q)]}  (11.1)

p*+4%)

For the antisymmetric case, equation (10.2), it is given by

Px 2){[1) log(p/q)+ (4K + Dng/2)+i[(AK + D)np/2 —qlog(p/g)]}  (11.2)

_ 1
S 2" +gq
Starting with the above expressions, the roots can be easily determined by Newton’s
iteration method in complex form, which is quite rapidly convergent. For the isotropic
case, such a technique has been given by Buchwald [3].
In a similar manner, we develop another set of eigenfunctions Gg(x) which satisfy the
homogeneous conditions Gy = dGg/dx = 0 at x = +a/2. Let

w = cosh

m) G(x).
a

On substituting this in equation (5), we obtain

d&*G _ [4p?\ G, [16p™
d?”cl(fz KRl e

Jo -0

where
Cy = H/D,=(D,+2D,)/D, = (E"+2G)/E,
5 = (D,/D,) = J(E,JE}).
On the basis G = e, it is found that

o = Zixpsig
where

p' = JUC=CY)2]

g = JUCy+CY)/2].
Now if

C, > C,, JEJE,) > (E"+2G)/E,
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ie.
\/(E;E’y) > E"+2G,

it follows C;, > C.

Consequently the transcendental equations for p’ are the same as before for p with
p’. ¢ replacing p, q respectively.t The function set Gg(x) can be obtained by inserting
P, ¢, p, aand x in the places of p, g, p, b and y respectively, in the expressions (9.1) and
9.2).

The even eigenfunction in the set Gg(x) is

cos(2q'p'x/a) cosh(2p'p’'x/a) sin(2q’p’x/a) sinh(2p’p’x/a)
= V] ] - : v 4 ’o (121)
cos(g'p’)  cosh(p’p’) sin(q'p’) sinh(p'p’)
where p’ is given by
M 2 r . h 2 o
sin(24'¢)  sinh(p'p) _ (13.1)
q b
The odd eigenfunction is
_ | sin(2q’p'x/a) cosh(2p’p’x/a)_cos(2q’p’x/a) sinh(2p’p’x/a) (122)
| sin(g’p)  cosh(p'p) cos(g’p’)  sinh(p’p’) '
and the transcendental equation is
sin(2q'p’) sinh(2p’p’
(flp)_ (/pp)zo. (13.2)

q p

The infinite number of complex roots of the equations (13.1) and (13.2) are also expressible
as tag+ify, K = 1,2,.... The asymptotic forms for the kth root of p’ is obtained by
putting p’, ¢’ in the places of p and g in equations (11.1) and (11.2).

3. SOLUTION FOR ANY GIVEN LOADING

Having the two sets of eigenfunctions Fi(y) and Gg(x), a solution for the clamped
orthotropic plate for any given loading Q(x, y) can be developed on lines similar to that
of Gaydon [6]. Assume that a particular integral w, of equation (2) can be found and write

W= wo+Q+w,

where Q(x, y) is a polynomial solution of the homogeneous equation (5) introduced for
reasons discussed later. Then

*w, o*w, o*w,
2H———+D ———
ot T 6x26y2+ Yoyt

D = 0. (14)

+ The authors are indebted to Professor F. A. Gaydon for this proof.
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The conditions (4.1) and (4.2) give at x = +a/2

Wy = —(wo+Q)
ow, 3]
Tx T oot
at y = +b/2 . (195)
wy = —(wo+Q)
ow, 0
oy T Tyt
Now consider another function w,(x, y) which satisfies
0w, o*w, 0*w,
* ox* +e 6x26y2+ Yooyt T 0 (16)
and the following conditions, at x = +a/2
*w, 0?
cr2_ Y o)
6y2 ayz(W0+ )
*w, 02
axdy = axay ot
and at y = +b/2 (17
3w o2
e FAA
3w, 2

— = Q
oxdy 6x0y(W°+ )
It is not difficult to see that the relation between w, and w, is
Wl = W2+k1x+k2y+k3 (18)

where k, k, and k; are constants ta be determined in any particular problem. If w, and
w, are even in x, then k, = 0. If they are even in y, k, = 0 and if odd in either coordinate
ks = 0. They are determined from known conditions, say, at corners.

The function w, can now be developed into a series of eigenfunctions Fy(y), Gg(x).
Assuming that the loading is symmetric about both the axes, we write

wy = ). Ag cosh(2pxx/b)F (y) + Y. Bg cosh(2pky/a)G(x) (19)

where Ay, Bg are complex constants, px = ag+iflg, px = ax+ifx and A_g, B_x, p_k
etc.,, are the respective complex conjugates of Ag, By, px etc. Note that the sets of roots
—ag +ifg, —ax+ifx do not yield any new solutions. Applying the conditions (17) it will
be seen that the problem is reduced to the determination of the complex constants Ay, By
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satisfying the following equations:

d?F, —0?
IR &7 = oF Mot = fi0) (20.1)
i PR 0
Int puall . S Q) = 20.2
bgAKpK dy 0x6y(W0+ ) = £2(») (20.2)
> d’G —62
Y B g = 5ot Q) = gi(9) (203)
y=1b2¢7
2y B 4Gy _ & (Wo+Q) = g4(x) (20.4)
L Pk dx _ oxdy 0 = £21X). -
The purpose of the Q will now be explained. The eigenfunctions F and G satisfy the following
conditions:
b/2 b/2 F al2 al2 dG
f F.ydyzf d—dy—f G.x.dx:f —dx =0 2n
~bJ2 b2 4y ~a/2 —a2 dx

and the function set is complete with respect to these self-equilibrating conditions, though
this is not proved here. Consequently Yor the expansions in equations (20.1) to (20.4) to be
valid, we should impose that

b/2 b/2

aj2 al2
fiydy = | Ldy = f g1 xdx = J g,dx = 0. (22.1)

—b/2 —b/2 —af2 —af2

Furthermore remembering the properties of the eigenfunctions viz.,

F
d——"zo = +b/2, dGK—Oatx= +a/2,
dy dx
and in view of expansions (20.2) and (20.4), we require that
f2|y= tb2 = g2|x=:ta/2 =0. (22.2)

Fortunately all these requirements on the functions f;, f;, g, and g, can be met by a proper
choice of Q generated in polynomials forming solutions of (5).

4. RE-ORTHOGONALISATION OF EIGENFUNCTIONS

Unfortunately the functions Fg(y), Gg(x) do not seem to possess suitable orthogonality
relations and indirect methods are to be employed for determining the constants in the
expansipns (20.1) to (20-4).

Although the usual methods such as least-squares etc., can be used, they do not possess
special mesits in the present problem. The techniques having certain advantages are (a) the
method of biorthogonal functions developed by Johnson and Little [7], and Little [8],
(b) the method of reorthogonalization developed by Gaydon and Shepherd [5], and
Gaydon [6]. The latter method is adopted here. This consists of expanding each of the
eigenfunctions into the orthogonal set of normalized clamped beam functions Y, defined by :

d4

— 4 —_
T~ @n/b)* Y = 0
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under the conditions

dy,
Y, = "=

M _0aty= +b/2.
"=y aty = +b/

In the symmetric case, the functions are

v 1 [cosh(24,y/b) cos(24,y/b)
m cosh 4, COS 4,

=7

where A, is given by tan A,,+tanh 4,, = 0. The 4,s are well-known [5]. Writing

FK = Z aKmYm (23)
m=1
by virtue of the orthogonality relation
b/2
[ nx=o.
- b/2
we find that
b/2
aKm:f Fg. Y, dy

—b/2

The expression for ag,, is given in Appendix.
Also, it follows that

F_yx = Conjugate of Fy = Y a g,Y,
=1

m=

where a_g,, = Conjugate of ag,,.
Furthermore, because of the following orthogonality relations [5]

A
J«b/z q2 Y,:. ayfyn

1.2 1.2 dy = (2'1m/b)4 5mn
-b/2 dy* dy®

¥ dy, d%Y,
- < dy = _(2lm/b)4 émn
J Ly Ay dy?
the functions f;, f; in equations (20.1) and (20.2) can be expanded in the following manner
x d?*Y,
) = m 231
fl(.}) ;Cm dy2 ( )
x . dy,
) =2 dn7" (23.2)
Sy ; dy
where,

o
|

b \4 (b2 d? Y,
) A
2Am —bj2 dy

b 4 ab/2 d3Y
. S Imgy.
dm (2/{”.) J' 2 fl dyg, )
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If we substitute the above expressions in equations. (20.1) and (20.2), we obtain

o0

Z AxAgm = Cp
'2‘=": m=1,2..) (24)
b Y AxPxkm = dn

K=—-w

which are the infinite system of equations required for the determination of Ag.
Similarly by expanding the set Gg(x) into the orthogonal set X,,(x) defined by
d*Xx dX
= (24/2)*X, =0, X,=—"T=0atx= +4a/2
dx dx

we obtain the following system of equations for By

0

z Bybgm =
’;:*:’ m=1,2.)%. 5)
= Y Bgpibim = d,
a K=—x

The expression for by, is obtained by putting a, p', p, ¢’ in the places of b, p, p, q respectively
in the expression for a,, (Appendix).
The expressions for ¢, and d,, are:

D J_2” dx?
a\* e @x
d = -2 L
m (um A

5. NUMERICAL EXAMPLE

As a numerical example, we consider the problem of a clamped plate under uniform
normal pressure. A particular solution is

1 QO 2
= — Z0p2/4—y2)2,
Wo 24 Dy(b /4—y?)
Since this automatically satisfies the conditions at y = 4 b/2, the function set Gg(x) is not
required. It is also seen that the function Qis not required, as the functions f; = — 8%w,/0y?;

f> = —0%w,/0xdy satisfy the requirements (22.1) and (22.2). Equations (20.1) and (20.2) give
0

cosh(pga/b)
A 0t =
; K9Km ™ osh Pk ¢

sinh(pga/b)

0
cosh pg

Z AxAxmpPx
K

where

. _l’Q_gb‘tb%tanh im.

" 8 Dy A3
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These are the required infinite system of equations, which may be solved by the usual
truncation procedure, using a computer. Since complex algebra can be handled on modern
high speed computers, the separation of real and imaginary parts can be carried out on
the computer itself.

For numerical work, we consider the plywood materials. The elastic constants are
listed in Timoshenko [10] and Lechnitzky [11]. We reproduce these values in Table 1,
and also present the values of p and ¢, defined by equation (8). Tables 2 to 6 give the eigen-
values, for symmetric case, for these materials. For a square plate (a = b), the numerical
work has been carried out, by retaining only the first ten Ax and taking m up to 10. This
means, each of the eigenfunctions is expanded into the first ten clamped beam functions
resulting in a square matrix of size 20 x 20, for the ten unknown real parts, a,, and the ten
unknown imaginary parts, b,, of the complex constants A,. The diagonal terms of the
matrix of the coefficients of a, and b, are found to be the largest, which justifies the truncation
of the infinite system of equations. The coefficients y, to v, occurring in the following
expressions for the deflection and moments are presented in Table 7.

W/x 0= yOQ0a4/Dx

yZO
Mx/x=0 = lean’ My/x=0 = ')/’ZQOLIZ
y=0 y=0
Mx7x=ia/2 = y3Q0a2, My/x=0 = y4Q0a2.
y=0 y=xb/2

TABLE 1. ELASTIC CONSTANTS FOR PLYWOOD IN BENDING
(x-axis is parallel to the face grain [9])

Unit 108 psi
Material
E, E, E" G p g
Maple, 5-ply 1-87 0-60 0073 0159 0-746 1-100
Afara, 3-ply 1-96 0-165 0-043 0-110 0-964 1-588
Gabbon (Okoume), 3-ply 1-28 0-11 0014 0-085 0932 1-591
Birch, 3- and S-ply 200 0-167 0077 017 0-693 1.725
Birch with bakelite membranes 1-70 0-85 0-061 0-10 0-742 0926

TABLE 2. EVEN EIGENVALUES FOR MAPLE 5-PLY

% B
1.38189480 1-12401050
3-34143423 2-44260144
5-29769735 3-76932012
7-25395011 5-09601519
9:21020294 6-42271029

11-16645576 7-74940539
13-12270859 9-07610049
15-07896142 10-40279559
17-03521424 11:72949069

18-99146707 1305618579
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TABLE 3. EVEN EIGENVALUES FOR AFARA 3-PLY

Oy Be
1-00986320 0-77871471
2-46011174 1-65054511
3.90570665 2-52813040
5-35131412 3-40569048
6-79692157 4.28325067
8:24252902 5-16081086
9-68813647 6:03837105

11-13374392 691593124
12-57935137 7-79349143
14-02495882 8.67105162

TABLE 4. EVEN EIGENVALUES FOR GABOON (OKOUME)

3-PLY
% B«
1.02382621 0-77664605
249943556 1-63218568
3.96953534 2-49340025
5-43965707 3-35459019
6-90977871 421578024
8-:37990035 507697029
9-85002198 5-93816034
11-32014362 6-79935039
1279026526 7-66054043
14-26038690 8-52173048

TABLE 5. EVEN EIGENVALUES FOR BIRCH 3- AND 5-PLY

oy Be
1.06875796 0-70045830
2:65281775 1-33025887
422091405 1.96003851
5-78903801 2:59001708
7-35716445 3.21999486
8.92529087 3.84997260
10-49341729 4.47995035
1206154371 5-10992809
13-62967013 5-73990584
15-19779655 6-36988358

The numerical work has been carried out on CDC-3600. Further increase in the number
of terms has shown no appreciable effect on the results. As a check on the accuracy of the
solution, the deflection and the slopes at the centre of the clamped edges at x = a/2 are
evaluated and found to be negligible. The ratio of the deflection at the edge to the central
deflection is found to be less than 0-7 x 10~ % in all the cases.

Numerical results are also derived by applying a Galerkin method for a few cases;
the results of the two methods agree with the limits of accuracy of the Galerkin method.
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TABLE 6. EVEN EIGENVALUES FOR BIRCH WITH BAKELITE

MEMBRANES
%X Be
1-49197169 1.32261523
3-55724328 297003726
5-62333449 4.62556876
7-68940848 6-28110539
9:75548245 7-93664198
11-82155643 9-59217858
13-88763040 11-24771518
15-95370437 12-90325177
18-01977835 14-55878837
20-08585232 16-21432497

TABLE 7. DEFLECTION AND BENDING MOMENTS FOR A CLAMPED SQUARE PLATE UNDER UNIFORM LOAD

Material Yo 71 72 73 Va

Maple, 5-ply 0-00023176 003691146 0-01595847 —0-07638084 —-0-03274248
Afara, 3-ply 0-00001872 0-04431386 0-00877378 —-0-08621326 —0-01638792
Gaboon (Okoume)

3-ply 0-00001976 0-04307108 0-00889494 —0-08569530 —0:01665159
Birch 3- and 5-ply 0-00001799 0-04636339 001409167 —0-08558040 —001645233
Birch with bakelite

membranes 0-00052536 003321223 0-01864018 —0-07014675 —0-041R136

6. CONCLUSIONS

Eigenfunctions have been developed for the problem of clamped, rectangular, ortho-
tropic plate undergoing small deflections. An analysis using these functions to obtain
extremely accurate solutions is presented. The reasons for the accuracy in the solutions
are that all the loads are made self-equilibrating and that it is the second derivatives that
are matched at the boundary. These factors cannot be easily incorporated in the familiar
methods such as multiple Fourier and energy methods. It is hoped that the present results
provide a basis for comparison in the development of approximate techniques such as
finite elements.
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APPENDIX

16/b @ -p) 2
sin 2qu) 0t Z,

Z, = {A,tan 4, . g(cos 2qpg +cosh 2ppy)/sin(2qpg) — px(p* + q%)}
Z, =P+ @@+ A/ (PP +(a— A/ p)?} X (@ + P+ A/ PV} (G + (0 — A/ Px)*}
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AGcTpakT—Pa3paboTaiel  cOOCTBEHHblE (QYHKUMH [ns 3alLEMIEHHOH, APAMOYroJbHOM OPTOTPOIHON
MNaCTUHKH, TOABEPKEHHOH ASHCTBHIO ManbIX NPOrHboB. YKa3aHo, 4To 06binble pyHkunu Ganne-Ilankornya
(1) ans cnydas wu3oTponuM 0OpasyloT cobofl cmeuManbubiil cayuait Oosiee oBWMX ‘‘OPTOTPOMHBIX
coOcTBeHHBIX pyHKUMHA'’. AHAIU3 OPTOTPONHLIX MIACTUHOK, HA OCHOBE 3THX (PyHKUMIt, JaeT Ype3BHYAHO
TLIATEbHBIE PElIeHUS.



